Submodular Constraints and Planar Constraint Networks: New Results

نویسندگان

  • T. K. Satish Kumar
  • Liron Cohen
  • Sven Koenig
چکیده

In this paper, we present fast polynomial-time algorithms for solving classes of submodular constraints over Boolean domains. We pose the identified classes of problems within the general framework of Weighted Constraint Satisfaction Problems (WCSPs), reformulated as minimum weighted vertex cover problems. We examine the Constraint Composite Graphs (CCGs) associated with these WCSPs and provide simple arguments for establishing their tractability. We construct simple almost trivial bipartite graph representations for submodular cost functions, and reformulate these WCSPs as max-flow problems on bipartite graphs. By doing this, we achieve better time complexities than state-ofthe-art algorithms. We also use CCGs to exploit planarity in variable interaction graphs, and provide algorithms with significantly improved time complexities for classes of submodular constraints. Moreover, our framework for exploiting planarity is not limited to submodular constraints. Our work confirms the usefulness of studying CCGs associated with combinatorial problems modeled as WCSPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of Submodular Constraints Expressible by Graph Cuts ∗ Stanislav

Submodular constraints play an important role both in theory and practice of valued constraint satisfaction problems (VCSPs). It has previously been shown, using results from the theory of combinatorial optimisation, that instances of VCSPs with submodular constraints can be minimised in polynomial time. However, the general algorithm is of order O(n) and hence rather impractical. In this paper...

متن کامل

Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Sum-Rate Maximization Based on Power Constraints for Cooperative AF Relay Networks

In this paper, our objective is maximizing total sum-rate subject to power constraints on total relay transmit power or individual relay powers, for amplify-and-forward single-antenna relay-based wireless communication networks. We derive a closed-form solution for the total power constraint optimization problem and show that the individual relay power constraints optimization problem is a quad...

متن کامل

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

The complexity and expressive power of valued constraints

This thesis is a detailed examination of the expressive power of valued constraints and related complexity questions. The valued constraint satisfaction problem (VCSP) is a generalisation of the constraint satisfaction problem which allows a variety of combinatorial optimisation problems to be described. Although most results are stated in this framework, they can be interpreted equivalently in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013